Show that by making a different inductive hypothesis, we can overcome the difficulty
with the boundary condition T(n) for recurrence (4.19) without adjusting
the boundary conditions for the inductive proof.
$$ T(n) = 2 T( \lfloor n/2 \rfloor) + n $$
let $ T(n)\leq c_1 n lgn +c_2 n $
$$ T(n) \leq 2 c_1 n/2 lg(n/2) + 2 c_2 n/2 $$
$$ T(n) \leq c_1 n lg(n/2) + c_2 n $$
$$ T(n) \leq c_1 n lg n - c_1 n + c_2 n $$
$$ T(n) \leq c_1 n lg n - ( c_1 n - c_2 n ) $$
$$ c_1 n - c_2 n \geq 0 $$
$$ c_1 \geq c_2 $$
for base case
$ T(1)\leq c_1 1 lg1 +c_2 1 $
$ T(1)\leq c_2 1 $
if $c_2$ is sufficiently large the above case is proved for base case as well.
No comments:
Post a Comment